Higher-order differential equations

Peyam Tabrizian
Wednesday, November 16th, 2011

This handout is meant to give you a couple more example of all the techniques discussed in chapter 6, to counterbalance all the dry theory and complicated applications in the differential equations book! Enjoy! :)

1 Homogeneous equations

1.1 Solve $y^{\prime \prime \prime}+y^{\prime \prime}-2 y=0$

Method: Find the aux. equation, factor it out, and find the solution.
Aux. equation: $p(r)=r^{3}+r^{2}-2=0$

To factor this, use the following theorem:

[^0]This gives $a= \pm 1, \pm 2$ (those are the only numbers which divide -2) and $b= \pm 1$ (the only numbers which divide 1), so $r=\frac{a}{b}= \pm 1, \pm 2$.

This means: plug in $r=1,-1,2,-2$ into your aux. equation, and STOP once you find a zero of p.

Tip: Always start with the easiest guess!

Here $p(1)=1+1-2=0$, so $r=1$ works!
Now use long division (divide $r^{3}+r^{2}-2$ by $r-1$) to get:

$$
p(r)=(r-1)\left(r^{2}+2 r+2\right)=0
$$

Which gives $r=1$ and $r=1 \pm i$ (quadratic formula)
Hence the general solution is:

$$
y(t)=A e^{t}+B e^{t} \cos (t)+C e^{t} \sin (t)
$$

Note: You might have to do this process (rat. roots thm and long division) several times, especially if you deal with fourth-degree polynomials)

Note: Sometimes there are shortcuts to this. For example, $r^{4}+4 r^{2}+4=$ $\left(r^{2}+2\right)^{2}$, and in this case you don't have to use any long-division.

1.2 Find a general solution to $(D-1)^{3}\left(D^{2}+2 D+5\right)^{2}[y]=0$

Aux: $(r-1)^{3}\left(r^{2}+2 r+5\right)^{2}=0($ replace D by r)
This gives $r=1$ (multiplicity 3) and $r=-2 \pm i$ (multiplicity 2), hence:
$y(t)=A e^{t}+B t e^{t}+C t^{2} e^{t}+D e^{-2 t} \cos (t)+E e^{-2 t} \sin (t)+F t e^{-2 t} \cos (t)+G t e^{-2 t} \sin (t)$
Note: This is exactly why we asked you the problem in this form, so that the auxiliary polynomial is easy to factor out.

2 Intervals of existence

2.1 Find the largest interval (a, b) on which the following differential equation has a unique solution:

$$
(t-4) y^{\prime \prime}+\sqrt{t^{2}-1} y^{\prime}+y=\ln (t)
$$

with

$$
y(2)=0, y^{\prime}(2)=5
$$

IMPORTANT: First divide the equation by the leading term:

$$
y^{\prime \prime}+\left(\frac{\sqrt{t^{2}-1}}{t-4}\right) y^{\prime}+\left(\frac{1}{t-4}\right) y=\frac{\ln (3-t)}{t-4}
$$

Now look at the domain of each term, including the inhomogeneous term:

However, because $(-\infty,-1)$ and $(4, \infty)$ do not contain the initial condition 2 , we ignore them and only consider the interval $[1,4)$
$\underline{y \text {-term: }}$ The domain of $\frac{1}{t-4}$ is $(-\infty, 4) \cup(4, \infty)$, and we only consider $(-\infty, 4)$

Inhom. term: The domain of $\frac{\ln (3-t)}{t-4}$ is $(-\infty, 3)$
(remember that the domain of $\ln (t)$ is $(0, \infty)$).
Finally intersect the intervals to get: $[1,4) \cap(-\infty, 4) \cap(-\infty, 3)=[1,3)$. (draw a picture if necessary). Note that this interval indeed contains the initial condition 2

And because we want an open interval (a, b), the answer is: $(1,3)$ (this is just a technicality)

3 Linear independence

3.1 Are the functions $\cos ^{2}(x), \sin ^{2}(x), 1$ linearly dependent or independent?

Linearly dependent because $\cos ^{2}(x)+\sin ^{2}(x)=1$.
Point: Linear dependence is usually easier to check than linear independence! That's why for the rest we're only going to focus on linear independence.

3.2 Determine if $f(t)=\cos (t)$ and $g(t)=\sin (t)$ are linearly dependent or independent

Form the (pre)-Wronskian:

$$
\widetilde{W}(t)=\left[\begin{array}{cc}
f(t) & g(t) \\
f^{\prime}(t) & g^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right]
$$

Notice how you build the (pre)-Wronskian: You put all the functions on the first row, and you differentiate as many times until you get a square matrix. This also works for more than 2 functions.

Now pick your favorite point t and evaluate the determinant of the above matrix at that point. For example, pick $t=0$:

$$
\operatorname{det}(\widetilde{W}(0))=\operatorname{det}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=1 \neq 0
$$

Since the determinant is $\neq 0, f$ and g are linearly independent.
Note: If you find that the det is $=0$, do NOT conclude that the functions are linearly dependent! See next example!

3.3 Are the functions $f(t)=t, g(t)=t^{2}, h(t)=t^{3}$ linearly independent or depedent?

$$
\widetilde{W}(t)=\left[\begin{array}{ccc}
f(t) & g(t) & h(t) \\
f^{\prime}(t) & g^{\prime}(t) & h^{\prime}(t) \\
f^{\prime \prime}(t) & g^{\prime \prime}(t) & h^{\prime \prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
t & t^{2} & t^{3} \\
1 & 2 t & 3 t^{2} \\
0 & 2 & 6 t
\end{array}\right]
$$

Now pick $t=1$ (see Note below), then:

$$
\operatorname{det}(\widetilde{W}(1))=\operatorname{det}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
0 & 2 & 6
\end{array}\right]=2 \neq 0
$$

Hence t, t^{2}, t^{3} are linearly independent.
Note: Had you picked $t=0$, you would have found that the determinant is $=0$. However, this does not mean that the functions are linearly dependent. Just continue choosing points until you find that the functions are linearly independent. For example, $t=1$ works!

3.4 Determine if $t e^{t}, t^{2} e^{t}, t^{3} e^{t}, t^{4} e^{t}$ are linearly independent

Before you tackle the Wronskian, always see if you can simplify your functions a bit! For this, use the definition of linear independence: Suppose that

$$
A t e^{t}+B t^{2} e^{t}+C t^{3} e^{t}+D t^{4} e^{t}=0
$$

Now cancel out e^{t} and you get:

$$
A t+B t^{2}+C t^{3}+D t^{4}=0
$$

Furthermore, provided $t \neq 0$ (the 'illegal value', we don't want to divide by $0)$ cancel out the t :

$$
A+B t+C t^{2}+D t^{3}=0
$$

So you only have to check if $1, t, t^{2}, t^{3}$ are linearly independent!
Now use the (pre)-Wronskian:

$$
\widetilde{W}(t)=\left[\begin{array}{cccc}
1 & t & t^{2} & t^{3} \\
0 & 1 & 2 t & 3 t^{2} \\
0 & 0 & 2 & 6 t \\
0 & 0 & 0 & 6
\end{array}\right]
$$

Pick $t=1$, which is good because $t \neq 0$ (the illegal value):

$$
\operatorname{det}(\widetilde{W}(1))=\operatorname{det}\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 2 & 6 \\
0 & 0 & 0 & 6
\end{array}\right]=12 \neq 0
$$

Hence the functions are linearly independent.

[^0]: Rational Roots Theorem If $r=\frac{a}{b}$ is a zero of p, then a divides -2 (the constant term of p), and b divides 1 (the leading coeff. of p).

